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Architecturally sophisticated metallomacrocycles are important
for their potential in a variety of molecular recognition-based
chemical applications, including chemical sensing, molecular
electronics, and catalysisSeveral groups have employed a variety
of strategies, such as the “directional-bonding” or “symmetry-
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interaction” approaches for building such structué3ur group L ‘ B | (o4

has developed a methodology now known as the weak-link - = N

approach for the synthesis of homomultimetallic macrocycles from D E

elementary metal and ligand precurs#n%.This approach has _l"__*_k . W JL_ R

further utilized flexible andsymmetrichemilabile multidentate r r r T T v T T
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ligands to yield metastable intermediates that contain both strong

and weak bonds. The weak bonds in these condensed intermediateé;"-q“’e 1. *P{*H} NMR spectra of compounds(A), 2 (B), 3 (C), 4 (D),

are subsequently broken to create the desired supramolecular 5 (E). The spectrum o8 is shown at-50 °C.

complexes in very high yields, Scheme 1. In this manner, the Scheme 1

thermodynamic products generated when directly targeting the "I‘;fe“;r’nee";:f;

flexible macrocyclic products are avoided. — L ,'—\A__{—\F;W"' M = Rh(1), Pd(ll), or Ir(1)
Using this approach, we have synthesized over 50 examples of j( X 'f” +L

metallomacrocycles which vary in metal, hemilable ligand, and Prfy_j— PR XX _pPh,

ancillary ligand attached to the metal that make up the macrotjcle.

Herein, we report the synthesis of the first heterobimetallic Scheme 2

macrocycles prepared via this approach. These macrocycles incor- 1

porate a novel dissymmetric ligand that contains both ether and PhiPsQ-o~-PPh:

. - . . . . [PA(NCCHy)] (BF J, IRhCI(COE),),
thioether weak links. This allows one to exploit the difference in m Am

"Open” Macrocycle X = Weak-Link (O, S, or N)

L = Ancillary Ligand
(Such as CH,CN, CO, Halide, CN)

I = Aromatic Group

lability between metatether and metalthioether bonds to form T2+ 287, TR
a variety of heterobimetallic architectures, Scheme 2. Because of ong s _@OHPP"’ thpﬁs_©_oﬂpphz
the relative differences in the binding strengths of these relatively )n@ 2 )a\ﬁ 3
weak binding moieties toward late transition mefaldyeterobi- PhR_S—<&Q_ PhR_S~S>0_
metallic macrocyclic intermediates with metals placed selectively PPh, PP
in either coordination pocket can be synthesized through a judicious ™0 lAQBF" erich (PANCEHOA B, l fetone
choice of reaction conditions, Scheme 2. The weak bonds of these — N L AL
intermediates can be sequentially broken through the appropriate P“PP:‘@OR:P" . PRA s©° AL
ligand substitution reactions to generate open, macrocyclic archi- Php/ [ seq ) { “opn, p,,F( { s> ) \ap,,
tectures8 and9, Scheme 2.

The moderately air-stable dissymmetric ligaddwas synthe- co l CH,CN KeN lCHaoH
sized based, in part, on a modified literature procet\see T3+ 3BF, AL
Supporting Information for details). THP{*H} NMR spectrum Phd des©° T con, thPHS'©'0K\F|’F’"z
of 1 contains two singlets at15.4 and—-20.5 ppm assigned to the PhF s_@c‘,’ - 8 PhPR';_@%C'P“ T
two inequivalent phosphine moieties, Figure 1A. These two PP PP,
resonances compare well with those for the related symmetric ether KCN lcngon l(g,:mml co
or thioether ligand4: Upon addition of 2 equiv of ligand to 1 o
equiv of a Pd(lly or Rh(I)*° starting material, monometallic <o~ Bl [5<&>-0
|n_termed|ate§1_1 and 32 were synthesized in nearly quantitative Nc"f‘; 4 CN P“zgh WNGCH, g cf’_"_z;h co NCP_'?f,d oN g
yields, respectively? PCE ppm \f; e,

The metals in these two intermediates selectively coordinate to

the thioether ends df to yield structures that contain (1) strong
phosphorus metal bonds, (2) relatively weak sulfumetal bonds,

ether) products are observed. This preferred coordination environ-
ment can be attributed to the stronger binding affinity of the
and (3) uncoordinated phosphine and ether moiefien(l3). The thioether groups to either Rh(l) or Pd(ll) than that for ether
3IP{1H} NMR spectra o2 and3, Figure 1B and C, are consistent  functionalities!* Complexes2 and 3 are stable with respect to
with their proposed structures showing preferential coordination isomerization and decomposition when heated inClpsolution

of the thioether to the metal center. Notably, no mixed (thioether/ under N at 60°C for 3 days. When an additional equivalent of a
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metal precursor is added for 3, the heterobimetallic condensed Detailed X-ray structural data including a summary of crystallographic
intermediates4 and 5 are formed in nearly quantitative yields parameters, select bond angles and distances, an ORTEP diagram, and
(>95%) and contain (1) two different metal atoms, (2) strong CIF file for 1. Correlation table between structural and spectroscopic
metal-phosphorus bonds, (3) weak met#hioether bonds, (4) properties of selected Rh(l) and Pd(ll) macrocycles (PDF). This material
weaker metatether bonds, and (5) substitutionally labile metal s available free of charge via the Internet at http://pubs.acs.org.
centers. The spectra indicate that there is a set of equivalent

phosphine moieties coordinated to each metal center3™HjéH} References
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In conclusion, by taking advantage of the stepwise synthetic (1) é:ngP){_lH} NMR (CDClz) 0 63.7 (s, PBPCH,CHS), —21.5 (s, PEPCHy

control offered by the weak-link approach, we have prepared (12) 3: 3p{H} NMR (CD,Cl,) 6 66.1 (d,Jrn_p = 162 Hz, PAPCH,CH,S),

partially opened and structurally flexible, fully opened heterobi- —20.3 (s, PEPCHz(ino)-
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